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Abstract. The ground–state properties of superheavy nuclei are investigated within various parametrisa-
tions of relativistic and nonrelativistic nuclear mean–field models. The heaviest known even–even nuclei
starting with Z= 98 are used as a benchmark to estimate the predictive power of the models and forces.
From that starting point, deformed doubly magic nuclei are searched in the region 100≤Z≤130 and
142≤N≤190.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 21.60.Jz Hartree-Fock and random-
phase approximations – 24.10.Jv Relativistic models – 27.90.+b 220 ≤ A

1 Introduction

The possible existence of shell–stabilized superheavy nu-
clei has been a strong motivation for heavy–ion physics
since almost three decades [1–3]. Early theoretical es-
timates on the basis of the macroscopic–microscopic ap-
proach predicted the spherical doubly magic superheavy
nucleus 298

184114 [2,3] which was a far away goal at that
time. Much more elaborate macroscopic–microscopic cal-
culations figured out an island of deformed shell closures
around Z=108 [4,5]. This region has been accessed in
recent experiments at GSI [6,7] and Dubna [8], where
amongst many other isotopes the region around the ex-
pected deformed doubly magic nucleus 270

162Hs108 has been
reached. The newly developed and the coming experimen-
tal facilities produce more and more new isotopes and
the expected magic Z=114 seems to be in reach. Super-
heavy elements are thus a topic of current interest and
it is worthwhile to look at it from various theoretical ap-
proaches. An alternative to the macroscopic–microscopic
approach are the mean–field models which start from an
effective energy–density functional and determine ground–
state wave–functions and densities variationally in a self–
consistent manner. The most widely used mean–field mod-
els in nuclear physics are the Skyrme–Hartree–Fock (SHF)
approach (for a review see [9]), the Gogny force [10], and
the relativistic mean–field model (RMF) (for reviews see
[11–13]). We will consider here the SHF as well as the
RMF to have one typical representative from the nonrela-
tivistic and from the relativistic domain. Both models rely
on a theoretically motivated and phenomenologically ad-
justed energy–density functional. The reliability of the ac-

tual parametrisations has developed very much since the
first steps two and a half decades ago. With 6–10 free
parameters, one obtains nowadays a very good reproduc-
tion of nuclear ground–state properties for the stable el-
ements [12,14,15]. It is then very interesting to probe
the descriptive power when extrapolating into the regime
of the exotic nuclei which had not been accounted for in
the adjustment of the forces. Investigations of light nuclei
near the drip–lines have revealed that there are several
loosely fixed aspects in these parametrisations (mainly
isovector properties) [16]. The extrapolation towards su-
perheavy nuclei challenges the predictive power in further
respects (level structure, effective mass). There exist al-
ready several investigations of the shell structure of su-
perheavy nuclei within self–consistent nuclear mean–field
models [17–19], especially since there were early indica-
tions [20] that proton and neutron shell closures strongly
affect each other and that Z=120 may be a shell clo-
sure rather than Z=114 as predicted by the macroscopic–
microscopic models. In a recent systematic investigation
of spherical superheavy nuclei covering about 15 different
high–quality parametrisations within the SHF as well as
the RMF, we have found very different predictions for shell
closures, with even a Z=126 shell showing up as third al-
ternative [17,21]. It is thus desirable to check the reliabil-
ity of the models in the regime of the existing superheavy
nuclei around Z=108 which requires, of course, deformed
mean–field calculations. This is what we will present here.
There is a further interesting aspect in these calculations.
The macroscopic–microscopic method, although generally
successful, requires preconceived knowledge about the ex-
pected shapes and single–particle potentials, which fades
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Fig. 1. Relative error of the binding energy in percent for the
isotope chains of the heaviest known even–even nuclei, calcu-
lated with the forces as indicated. Negative values of δE cor-
respond to under–bound nuclei, positive values to over–bound
nuclei. The experimental data are taken from [30]

away when stepping into new regions. One has to remem-
ber that it took a long time to realize that higher order de-
formations are required to find the deformed shell closures
[4,5]. Self–consistent calculations, on the other hand, pro-
vide deformed ground states in an unprejudiced manner
within the chosen symmetry. They thus provide a valuable
complement to the macroscopic–microscopic calculations.

The paper is outlined as follows: In Sec. 2 we explain
briefly the models and parametrisations used. In Sec. 3 we
present and discuss the results.

2 The framework

For both the SHF as well as the RMF there exists a
widespread literature. Therefore we can skip a detailed
presentation of the formalism and resulting self–consistent
equations.

There remains the problem of choosing a parametrisa-
tion out of the overwhelming variety of published forces
(more than 60 for SHF and about 20 for the RMF model).
A decision was worked out in a previous study of spher-
ical superheavy nuclei [21]. To that end, we had prese-
lected 10 parametrisations for SHF and 5 for the RMF
model which all represented an up–to–date quality of de-
scribing the ground–state properties for the existing stable
nuclei. We confine this further to 6 parametrisations for
SHF and two for RMF in order to keep the presentation
just manageable. The selection of SHF forces is: SkM∗ as
a widely used standard which also guarantees reasonable
fission barriers [22]; SkP was developed around the same
time as a force tuned for full nuclear HFB calculations
[23] and here serves as a representative for effective mass
m∗/m = 1 (all other forces have lower effective masses
0.55 ≤ m∗/m ≤ 0.8); SLy6 is a recent fit which aims at
describing extremely neutron–rich systems up to neutron
stars [14]; SkI1–SkI4 stem from a recent investigation of
spectral properties and isotopic shifts [15] where SkI1 is a

Table 1. Pairing strengths Vn for the neutrons and Vp for
the protons for the mean–field forces used in this study. m∗/m
is the isoscalar effective mass in infinite nuclear matter. Note
that the absolute value of the pairing strength decreases with
increasing effective mass

Force m∗/m Vn [MeV] Vp [MeV]

SkM* 0.789 −276 −292
SkP 1.0 −241 −265
SkI1 0.693 −320 −305
SkI3 0.574 −340 −351
SkI4 0.650 −310 −324
SLy6 0.689 −308 −320

PL–40 0.581 −346 −348
NL3 0.595 −329 −342

fit within the old standard parametrisation, SkI3 is a sim-
ilar fit with the isovector spin–orbit force in exact analogy
to the RMF, and SkI4 a fit with additionally freely varied
isovector spin–orbit force. This sample is typical for the
wide span of choices within SHF and particularly contains
a systematic variation of spectral properties (m∗/m and
spin–orbit) crucial for the prediction of superheavy nuclei.
There is less variance in the RMF parametrisations as the
spin–orbit force and the effective mass is more or less fixed.
There remains some choice in the isovector properties and
we thus consider two forces: PL–40, a variant with stabi-
lized meson self–coupling (we have checked that the re-
sults from PL–40 and the widely used standard nonlinear
force NL–Z [12] do not differ visibly for the observables
we will study in the following), as representative of fits
biased on stable nuclei [24,12] and NL3 as a recent fit
which tries to perform better with respect to exotic nuclei
with large isotopic chains [25]. We will see later that even
this narrow selection covers a large variance concerning
the average quality of the binding energies in the known
superheavy nuclei. Nevertheless we will restrict part of the
discussions to a tight subselection of two forces, SkI4 for
SHF and PL–40 for the RMF.

In both SHF and RMF the pairing correlations are
treated in the BCS scheme using a delta pairing force [26]
Vpair = Vp/n δ(r1 − r2). The pairing strengths Vp for pro-
tons and Vn for neutrons depend on the actual mean–field
parametrisation, see table 1. They are optimized by fitting
for each parametrisation separately the pairing gaps from
a fourth–order finite–difference formula of binding ener-
gies in isotopic and isotonic chains of semi–magic nuclei
throughout the chart of nuclei. The pairing–active space
is chosen to include the number of one additional shell of
oscillator states above the Fermi energy with a smooth
Fermi cutoff weight, for details see [27]. Furthermore, a
center–of–mass correction is performed. The actual recipe
depends on the parametrisation. For the SkIx forces, SLy6
and PL–40, we use the prescription to subtract a poste-
riori Ec.m. = 〈P̂2

c.m.〉/(2mA), see [12,28]. For NL3, the
harmonic oscillator estimate Ec.m. = (3/4) 41A−1/3 MeV
is subtracted, while for SkM∗ and SkP only a diagonal cor-
rection is performed [28], as used in the original adjust-
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Fig. 2. The same as in Fig. 1, but for isotone chains with the
neutron numbers as indicated

ment of these parameter sets. The numerical procedure
represents the coupled SHF and RMF equations on a grid
in coordinate space using a Fourier definition of the deriva-
tives and solves them with the damped gradient iteration
method [29]. We consider axially symmetric deformed
states and thus use cylindrical coordinates for the numeri-
cal representation. Both models have been implemented in
a common programming environment sharing all the cru-
cial basic routines. We want to point out that we consider
ground states throughout the paper. These ground states
are determined self–consistently without any assumptions
about the nuclear shapes.

3 Results and discussion

3.1 Comparison with experimental binding energies

The most important, and for most superheavy nuclei the
only quantitatively known, global ground–state property
is the binding energy. Figures 1 and 2 show the relative
error of the binding energy

δE =
Ecalc − Eexpt

Eexpt
(1)

in percent for the heaviest known even–even nuclei, cal-
culated in an axial representation with the mean–field
parametrisations as indicated. The experimental values
are taken from [30]. Negative values of δE correspond
to under–bound nuclei, while for positive values the ab-
solute value of the calculated binding energy is too large.
The same results are drawn twice, once versus neutron
number to display isotopic trends and once versus proton
number for the isotonic trends. The first impression from
the figures is that all forces come fairly close to the exper-
imental results, usually with deviations below 1%. It is to
be remembered that the average precision of these forces
is about 0.3% precision for the conventional stable nuclei.
One looses, of course, this level of accuracy when pro-
ceeding to extrapolations. But the remaining 1% demon-
strate a still satisfying predictive power of the mean–field

models in general. In this subsection we discuss the er-
ror of the absolute binding energy, and it should be kept
in mind that there are some uncertainties in the calcu-
lated binding energy. There is an uncertainty due to the
numerical solution of the equations of motion which is,
however, safely below 0.1 MeV and thus negligible in our
calculations. The prescription of pairing adds another un-
certainty to the calculated binding energies. We use the
same pairing scheme and force for all calculations with an
optimized strength for each mean–field parametrisation.
The use of a local pairing force improves the description
of pairing correlations within the BCS scheme compared
to a constant force or the constant gap approach [27],
and removes some problems concerning the coupling of
continuum states to the nucleus. From the possible varia-
tion of pairing recipes, we infer an uncertainty of the total
binding energy of approximately 1 MeV, corresponding
to an uncertainty of the relative errors of 0.05% [31].
The center–of–mass correction is also performed approxi-
mately, yielding only small uncertainties of approximately
0.2 MeV for these heavy systems [32]. In our calculations
we neglect the correction for spurious rotational and vi-
brational modes, which can increase the binding energy up
to 1 MeV [33], and is negligible for the present discussion.
At second glance, we see that the deviations are not dis-

tributed stochastically but show clear trends. First, there
is a general offset for each force, and second, the devia-
tions line up along one slope in isotopic or isotonic trends.
The general offset comes as a consequence of a long–range
trend with mass number. Comparing the different forces,
we see large differences in the quality for this particular
region of the nuclear chart, although all forces have com-
parable quality in the regime of stable nuclei. This is a
typical behavior of an extrapolation. It is, however, grati-
fying that there remain enough forces which provide good
quality also for these superheavy nuclei. The average rel-
ative error of the binding energies calculated with PL–40,
NL3 and SkI4 stays within the 0.3% demanded for the
fit nuclei. Although the results from the relativistic forces
NL3 and PL–40 are somewhat closer to the experimental
data than those obtained with the nonrelativistic SkI4,
one has to take into account as an additional criterion the
slopes of the errors of the binding energy, which hint at an
unresolved isotopic or isotonic trend. Non–zero slopes cor-
respond to an error in the separation energies. From the
three preferred forces, SkI4 leads to the best (near zero)
slopes whereas significant isotopic and isotonic trends re-
main in the RMF models.

For completeness, we ought to mention that bind-
ing energies of superheavy nuclei have been studied ex-
tensively in two approaches which are related to the
present mean–field models, the finite–range droplet model
(FRDM) [34] and extended Thomas–Fermi with Skyrme
interactions (ETFSI) [35].The FRDM describes the global
trends of binding energies EB with a very elaborate liquid–
drop model and adds the detailed fluctuations by the shell
correction method using a standard parametrisation of the
nuclear shell model. The free parameters of the FRDM are
fitted to a huge pool of data on EB, and these fits yield
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Fig. 3. Two–neutron separation energy S2n for isotope chains
of superheavy nuclei. To enlarge the shell effects, the smooth
liquid–drop trend of the separation energies has been sub-
tracted

a remarkable reproduction of the EB with a typical error
of ∆EB = ±0.7 MeV. The ETFSI lies between the FRDM
and the mean–field models considered here. It is based on a
SHF description, but solves the mean–field equations in a
semi–classical approach (ETF) and adds shell corrections
a posteriori, as in the FRDM, but here they are deduced
self–consistently from the ETF mean–field. The parame-
ters of the underlying SHF model, i.e., the force SkSC4,
are fitted aiming at optimal description of binding ener-
gies. The resulting rms error is 0.74 MeV, quite similar to
the FRDM. The FRDM and ETFSI, being concerned ex-
clusively with EB, thus differ in their descriptive bias from
the other mean–field models which aim at a much broader
range of observables, considering radii, form–factors, giant
resonances and possibly more. At least we can learn from
these approaches with bias on energies that the limit of
achievable precision of mean–field models is somewhere
near 0.7 MeV. Moreover, the FRDM and ETFSI have al-
ready been extended to include data on superheavy nuclei
(which is not the case for all the SHF and RMF parametri-
sations discussed here). It is found that the new data can
be accommodated very well within the given rms error.
This agrees with our findings deduced from Figs. 1 and 2,
namely that there are indeed some parametrisations out

Fig. 4. The same as in Fig. 3, but for the two–proton separa-
tion energy S2p in the isotone chains with the neutron number
as indicated

of the manifold of existing forces which provide a good de-
scription for the known superheavy nuclei. The agreement
could even be much improved when including these new
data specifically in the adjustment, a step which has yet
to come for SHF and RMF. The interesting open question
is whether this statement extends further into the super-
heavy region where details of shell structure become even
more crucial.

3.2 Two–nucleon separation energies

As we have seen, trends can serve as observables that are
as important as the binding energy itself. The trends are
directly related to the two–neutron and two–proton sepa-
ration energies

S2n(N,Z) = E(N − 2, Z)− E(N,Z) ,

S2p(N,Z) = E(N,Z − 2)− E(N,Z) . (2)

For a better graphical discrimination, we scale away the
smooth overall trend in the separation energies by sub-
tracting from the experimental and calculated values the
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corresponding separation energies calculated with the sim-
ple Bethe–Weizsäcker mass formula

ELDM(Z,A) = aV A+ aSA
2/3 + aC Z

2A−1/3

+aA
(Z −A/2)2

A
± δ (3)

and the parameters from [36].
Apart from shell closures, the experimental values of

the resulting quantity S2q − SLDM
2q are approximately con-

stant, while they show a sudden jump at a shell closure.
Therefore it gives a more direct measure of shell closures
than the two–nucleon separation energy itself. Figure 3
shows S2q − SLDM

2q for experimentally known two–neutron
separation energies (full diamonds) in comparison with
mean–field results for a variety of forces in the region of
nuclei either known or accessible to experiment in the
near future. The uncertainties of the binding energy as
discussed in the last subsection cancel almost in this dif-
ference quantity.

The first impression is again that all forces perform
fairly well staying within 1 MeV from the data. But the
differences that have appeared in Figs. 1 and 2 also show
up here if one looks for the details. We have seen already
that the slope of PL–40 deviates from the slope of the
experimental binding energies. This becomes apparent in
Fig. 3 in that the results from PL–40 for the S2n deviate
from the data more than for several other forces. We see
here a weakness of PL–40 concerning isotopic trends. The
other RMF parametrisation, NL3, which was fitted with
more emphasis on isotopic trends, performs better for the
S2n. In any case, the SHF parametrisations generally come
closer to the data. This is due to the fact that SHF has
more isotopic flexibility than the RMF model and that
thus isotopic trends can be better accommodated. The
trends have been better adjusted in normal nuclei and
this shines through even now in the extrapolation to the
superheavy region.

Looking more closely at the trends of the S2n, we see a
generally smooth pattern interrupted by occasional steps
or kinks. Such a sudden step in the S2n is a typical sig-
nature of a shell closure. The most pronounced steps are
seen between N=162 and N=164 which is clearly related
to the strong neutron shell closure at N=162 as seen in
Fig. 5. The height of the step varies with Z and is largest
at Z=108. It also varies with forces, being large for most
SHF forces, smaller for the two relativistic cases, and ab-
sent for SkM∗ and SkP. A less pronounced step can be
spotted between N=150 and N=152 for SkI3 and SkI4
indicating a weak shell closure at N=150. But the ex-
perimental data which are available for Z=98 and 100
do not show any signature of that step. They rather in-
dicate a step at the next isotope N=152, particularly for
Z=100. It is the force SLy6 which comes closest to this
feature. We thus see that the very details of this region
around N=150 are not perfectly reproduced by any one
of the forces. One has to keep in mind that the step or
shell closure there is only vaguely indicated in experiment
as well as in the calculations. The region with a more
pronounced shell closure is expected at N=162, and it is

most interesting to see what future experimental data will
show there.

Finally, in Fig. 4 we show results for the two–proton
separation energies S2p in comparison with the available
experimental data. The most prominent difference to the
previous figure is the more compressed energy scale which
demonstrates that there are larger differences in the pre-
dictions of that observable. Again the SHF forces SkI1,
SkI3 and SkI4 perform best overall. The more detailed
analysis of steps (i.e. shell closures) is less conclusive here
as the height of the steps is generally smaller than in case
of the S2n. Nonetheless, we can spot in the longest chain
(for N=156) a shell closure at Z=108 for most SHF mod-
els but at Z=104 for PL–40 and SkI3 (remember that the
proton shell closure moves with increasing neutron num-
ber in case of SkI3, from Z=104 to Z=108, see Fig. 5).
In any case, we see that the proton shell closures in that
region of deformed superheavy nuclei are all rather weak.
It will require a systematical investigation of a large set
of data to pin down the effects.

3.3 Deformed shell closures

The search for magic shell closures in superheavy nuclei
has accompanied the field from the beginning. A way to
quantify magicity are the proton and neutron shell gaps

δ2n(N,Z) = E(N + 2, Z)− 2E(N,Z) + E(N − 2, Z),
δ2p(N,Z) = E(N,Z + 2)− 2E(N,Z) + E(N,Z − 2)(4)

which are taken in steps of two neutrons or protons, in or-
der to avoid interference with the pairing gap. This quan-
tity usually has small values for the majority of nuclei
and develops sudden spikes at magic shell closures. The
height of the peak quantifies how stable a shell closure is as
compared to the neighboring background. As an example,
the experimental values for the doubly magic 208Pb are
δ2n = 5.0 MeV and δ2p = 6.6 MeV. The shell gap decreases
with increasing system size and gaps around 3 MeV can
be considered as well developed shell closures in the realm
of superheavy nuclei.

Figure 5 shows the shell gaps for all even–even nuclei
in the considered region for a broad selection of SHF and
RMF parametrisations. The dark horizontal stripes in the
left panels (δ2p) indicate the closed proton shells and the
dark vertical stripes in the right panels the closed neutron
shells (δ2n). The grey scales are chosen such that larger
values for the shell gaps are darker. Fully black squares
indicate a value of the shell gap of about 3.5 MeV for pro-
tons and 2.5 MeV for neutrons. The different forces show
quite different patterns for these shell gaps. This holds
particularly for the proton shell closures. All SHF forces
(SkM∗, SkP, SLy6, SkI1, SkI3, SkI4) basically agree on
predicting a closure at Z=108, however, with quite differ-
ent amplitude of the gap. The RMF forces (NL3, PL–40)
prefer smaller Z, 104 or 106. It is interesting that SkI3,
the Skyrme parametrisation with an isospin dependence
of the spin–orbit force similar to the RMF, shows shell
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Fig. 5. Grey scale plots of proton shell gaps δ2p (left column),
and neutron shell gaps δ2n (right column), in the N–Z plane as
resulting from mean–field calculations in axial symmetry with
the parametrisations as indicated. Note that scales of the shell
gaps differ for protons and neutrons. The two–proton drip–line
and β–stable nuclei are indicated by a heavy line and black
squares, respectively

closures at Z=104 and at Z=108 as well. For the neu-
trons again the height of the shell gap varies substantially

amongst the forces. But almost all forces agree in predict-
ing a magic N=162. Some forces also show a hint of a
shell closure at the smaller N=150, that does not appear
in the experimental data as already discussed in Sec. 3.2.
The shell closures are generally less pronounced for the
Skyrme forces with large effective mass, i.e. SkM∗ and
SkP, that therefore have the largest average level density
in the vicinity of the Fermi energy of all the investigated
parametrisations. The figure demonstrates the basic dif-
ferences between SHF and RMF concerning proton shell
closures and the more quantitative variation within each
class of mean–field models. In order to look a bit more
into detailed properties of the (deformed) shell closures
in the considered mass range, we confine the next steps
to two typical representatives, the force SkI4 for the SHF
and PL–40 for the RMF model.

It was worked out already within the macroscopic–
microscopic method that one will have deformed magic
shell closures for Z = 108 and N = 162. This has only
been found after carefully optimizing the ground states
with deformations of higher multi–polarities in the shell
model ansatz [4,5]. The mean–field models, on the other
hand, deliver an arbitrarily deformed ground state at once
as solution of the self–consistent equations. It is interest-
ing to see which deformation properties emerge from the
mean–field calculations. Figure 6 shows the two–proton
and two–neutron shell gaps as well as the corresponding
dimensionless quadrupole (β2) and hexadecapole (β4) mo-
ments

β` =
4π

3AR`
〈r` Y`0〉 with R = 1.2A1/3 fm (5)

for SkI4 and PL–40 for a broader range of isotopes reach-
ing up into the regime of the next spherical shell closures.
The general features of the previous figure concerning shell
closures persist. New is the information on deformation. A
clear region of deformation is visible for the nuclides with
small mass number Z<110, N<170, and equally clear is
the restoration of spherical symmetry for the larger nuclei.
There are slight differences between PL–40 and SkI4 con-
cerning the upper end of the region of deformed ground
states, that correspond to the different predictions for the
next spherical magic proton number from these two forces
[21]. It is to be noted that energetically competing oblate
isomers exist for the heaviest systems in the sample with
N>184.

The neutron shells are similar for SkI4 and PL–40.
Both forces predict a spherical magic number N=184 and
deformed shell closures at N=162 and 174. The spherical
shell at N=172 in PL–40 appears only for proton numbers
larger than Z=120 due to the onset of deformation going
to smaller charge numbers.

There are clear differences concerning the proton
shells. PL–40 predicts a deformed shell closure at Z=104
and a spherical shell closure at 120, whereas SkI4 offers
a deformed Z=108 and various short stripes of spheri-
cal shell closures at Z=114, 120, 124, and, however, less
pronounced at Z=126. The most interesting case is the
occurrence of doubly magic nuclei, i.e., the coincidence
of magic proton and neutron numbers. The predominant
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Fig. 6. Grey scale plots of proton shell gaps δ2p (first column) neutron shell gaps δ2n(right column), relative quadrupole
moments β2 (third column) and relative hexadecapole moments β4 (right column) in the N–Z plane as they result from
calculations in axial symmetry with the forces SkI4 (upper part) and PL–40 (lower part). The assignment of scales is indicated
in the upper panels

one for PL–40 is the nucleus 292
172120, a secondary chance

exists with 304
184120. Both are spherical, PL–40 predicts no

deformed doubly magic nucleus in the superheavy region
at all. Three doubly magic nuclei appear for SkI4, namely
the deformed 270

162108 and the spherical 298
184114, 308

184124, and
310
184126. We see here again the same differences in the pre-
diction of doubly magic nuclei as in our previous inves-
tigation of spherical superheavy nuclei [21]. One has to
remember, however, that the shell gaps are anyway very
small in these superheavy nuclei with their high level den-
sity, see Fig. 6. It remains yet to be seen to what extent
such differences could have any practical consequences.

3.4 α–Decay half–lives

The lifetimes and decay channels of superheavy nuclei are
of great importance for planned future experiments. The
practical question is concerned with the stability of the
superheavy elements. The shell gaps, studied above, pro-
vide one aspect which is related to the first fission barriers.
Other important measures of stability are the α–decay Q–
values and half–lives Tα, which are estimated here with the
Viola systematics [37] using a recent fit of the parameters
[38]. These two quantities, calculated from the binding en-
ergies computed with SkI4 and PL–40, are shown in Fig. 7.
For both forces the nuclei in the valley of β–stability are
rather stable. Consider, e.g., the 298

184114 nucleus: SkI4 pre-
dicts a half life of 1013 s and PL–40 gives 108 s. Going
towards the proton–rich nuclei, one sees that PL–40 gen-
erally predicts more stable nuclei compared to SkI4. This
is correlated with the two–proton drip–line which is closer
to the valley of β–stability for SkI4 than for PL–40.

Drastic differences in the predictions of lifetimes occur
for the nucleus 292

172120, which is doubly magic with PL–40
but not for SkI4. While for PL–40 there arises an area
of increased stability with a life time of 104 s, SkI4 on-
ly predicts 10−4 s. This relates to the strong Z=120 and
N=172 shells which do not occur for the parametrisation

Fig. 7. Grey scale plots ofQα values (left column) and the cor-
responding α–decay half lives estimated from Viola–Seaborg
systematics (right column) as it results from SkI4 (upper part)
and PL–40 (lower part). Scales are indicated in the upper boxes

SkI4. After all, one has to keep in mind that these α–
decay half lives here are estimated by a semi–empirical
formula and serve only as a guideline. The application
of the Viola systematics requires that the landscape of
fission barriers for the superheavy nuclei remains similar
to the known heavy nuclei for which the systematics was
developed. This needs yet to be checked.

4 Conclusions

We have investigated the capability of nuclear mean–field
models to describe ground–state properties of superheavy
nuclei. Two different approaches have been considered, the
nonrelativistic Skyrme–Hartree–Fock scheme and the rel-
ativistic mean–field model. From the enormous manifold
of available parametrisations for these two models, eight
parametrisations have been selected for the present study,
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two of them as “best candidates” with respect to overall
quality together with good performance for superheavy el-
ements, and five further choices as most typical variations.
The study has covered elements in the range 100≤Z≤128
and 140≤N≤190 where experimental data are already
available for the smaller samples.

The results of the mean–field models (in various para-
metrisations) have been compared with experimental data
for the total binding energy. The binding energy as well
as the two–neutron and two–proton separation energies
are reproduced fairly well by all the considered parame-
trisations. A more detailed look reveals significant dif-
ferences. Total binding energies are less well reproduced
by those parametrisations which make compromises when
fitting normal nuclei (e.g. sacrificing the surface tension
which, in turn, deteriorates trends with mass number).
Separation energies are more sensitive to the level struc-
ture and here we see a systematic difference between SHF
and RMF, where SHF comes generally closer to the data.
The mismatch of the RMF is due to its rigidity concern-
ing isovector properties. There remains an open question
at that point and it is most interesting to see a compari-
son for heavier systems where we expect more pronounced
shell closures.

We have scanned the shell closures, deformations, and
stability of all superheavy elements in the considered
range. The SHF and the RMF deliver different predic-
tions for doubly magic shell closures in regime of deformed
closures as well as for spherical ones. Both models agree,
however, in their predictions of deformations as such. The
nuclei in the range Z<110 and N<168 have deformed
ground states and the deformation extends to higher mul-
ti–polarities. These findings confirm the predictions of
the macroscopic–microscopic models. The SHF and the
RMF model differ in their estimates for proton shell clo-
sures. The RMF parametrisation PL–40 places them at
Z=104 (deformed) and 120 (spherical) whereas the SHF
parametrisation SkI4 prefers Z=108 (deformed), 114, and
124 (both spherical). Neutron shell closures are expected
in both models at N=162 (deformed) and 184 (spherical).
PL–40 predicts additionally a spherical shell closure at
N=172. A faint shell closure is predicted at N=150 from
some mean–field models considered here whereas available
experimental data on superheavy nuclei hint at a similarly
faint shell closure for N=152. But the relevance of this
mismatch is not yet clear as this concerns small energy
differences. The Q–values and half lives for α–decay show
a difference between SHF and RMF when going towards
proton–rich nuclei. The RMF model with PL–40 predicts
more stability in that region.
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